Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Deepak Chopra, ${ }^{\text {a }}$ K. Nagarajan ${ }^{\text {b }}$ and T. N. Guru Row ${ }^{\text {a }}$
${ }^{\mathrm{a}}$ Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and ${ }^{\mathbf{b}}$ HIKAL India Limited, Bannerghatta Road, Bangalore 560 078, Karnataka, India

Correspondence e-mail:
ssctng@sscu.iisc.ernet.in

Key indicators

Single-crystal X-ray study
$T=290 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.088$
$w R$ factor $=0.200$
Data-to-parameter ratio $=15.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

1-(4-Chlorobenzyl)-6,6-dimethyl-2-phenyl-1,5,6,7-tetrahydro-4H-indol-4-one

In the title compound, $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{ClNO}$, there are two independent molecules showing similar conformations, the tetrahydroindole ring system being approximately planar except for the dimethyl-substituted C atom. Molecules are linked via $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}, \mathrm{C}-\mathrm{H} \cdots \pi$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interactions, forming a sheet-like structure.

Comment

The previous paper (Chopra et al., 2005) describes the background to this study. Unlike the compound reported in that paper, the presence of chlorine in the title compound, (I), generates $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interactions contributing to a change in the packing mode.

(I)

In compound (I), there are two independent molecules (A and B) in the asymmetric unit (Fig. 1). In the tetrahydroindole ring system in molecule A, atom C5 deviates by 0.621 (4) \AA from the $\mathrm{C} 6-\mathrm{C} 8 / \mathrm{C} 3 / \mathrm{C} 4$ mean plane, whereas in molecule B, atom C28 deviates 0.601 (4) A from the C29-C31/C26/C27 mean plane. Cremer \& Pople (1975) analysis for the sixmembered ring of molecule A reveals the puckering parameters as $Q(2)=0.350(4) \AA, \varphi(2)=116.1(8)^{\circ}, Q(3)=$ 0.273 (5) $\AA, Q=0.444$ (5) \AA and $\theta=52.1$ (5) ${ }^{\circ}$, and in molecule B these values are $Q(2)=0.341$ (4) $\AA, \varphi(2)=118.3(7)^{\circ}, Q(3)$ $=0.265$ (4) $\AA, Q=0.431$ (5) \AA and $\theta=52.1$ (5) ${ }^{\circ}$. The conformation of molecule B is stabilized by an intramolecular C $\mathrm{H} \cdots \pi$ interaction (Fig. 1 and Table 2). A $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bond involving $\mathrm{H} 9 A$ holds the two molecules in the asymmetric unit together. Intermolecular C $\mathrm{H} \cdots \pi$ interactions involving atoms $\mathrm{H} 4 B$ and $\mathrm{H} 27 B$ form molecular dimers and such dimers are held together by C H..O interactions involving atom H34, forming molecular

Received 4 August 2005 Accepted 24 August 2005 Online 31 August 2005

Figure 1
The molecular structure of (I), showing 50% probability displacement ellipsoids. Dotted lines indicate $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions. H atoms have been omitted unless they are involved in hydrogen bonding.

Figure 2
Packing of molecules in (I). Dotted lines indicate $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}, \mathrm{C}-\mathrm{H} \cdots \pi$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interactions. H atoms have been omitted unless they are involved in hydrogen bonding. [Symmetry codes: (_1) $x+1, y, z-1$; (_2a) $\left.-x+1,-y+2,-z ;\left({ }_{2} b\right)-x,-y+1,-z+1.\right]$
chains along the b axis; $C g 1$ and $C g 2$ in Table 2 are the centroids of the indole rings $\mathrm{N} 1 / \mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 8 / \mathrm{C} 7$ and $\mathrm{N} 2 / \mathrm{C} 24 /$ C25/C31/C30, respectively. In addition, intermolecular C$\mathrm{H} \cdots \mathrm{Cl}$ interactions (Table 2) involving atom H 14 (molecule A) and the chlorine atom Cl 2 (molecule B) further hold the molecules together, forming chains along the c axis, leading to the formation of a sheet-like structure (Fig. 2).

Experimental

Compound (I) was synthesized according to the procedure reported in the literature (Nagarajan et al., 1985). Crystals were obtained from
a solution of dichloromethane and hexane (1:2) by slow evaporation at 278 K .

Crystal data

$\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{ClNO}$
$M_{r}=363.87$
Triclinic, $P \overline{1}$
$a=9.7761(14) \AA$
$b=13.0082(19) \AA$
$c=15.832(2) \AA$
$\alpha=75.900(3)$
$\beta=87.872()^{\circ}$
$\gamma=81.639(3)^{\circ}$
$V=1931.9(5) \AA^{\circ}$

$$
Z=4
$$

$D_{x}=1.251 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 636 reflections
$\theta=1.4-26.4^{\circ}$
$\mu=0.21 \mathrm{~mm}^{-1}$
$T=290$ (2) K
Plate, colourless
$0.21 \times 0.06 \times 0.02 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.946, T_{\text {max }}=0.996$
15035 measured reflections
7488 independent reflections
3904 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.042$
$\theta_{\text {max }}=26.4^{\circ}$
$h=-12 \rightarrow 11$
$k=-16 \rightarrow 15$
Refinement
Refinement on F^{2}
H -atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.088$
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0861 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$w R\left(F^{2}\right)=0.200$
$S=1.10$
7488 reflections
473 parameters
$(\Delta / \sigma)_{\max }<0.001$ 。
$\Delta \rho_{\text {max }}=0.25{\text { e } \AA^{-3}}^{-3}$
$\Delta \rho_{\text {min }}=-0.27 \mathrm{e} \mathrm{A}^{-3}$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

Cl1-C13	$1.741(4)$	$\mathrm{N} 2-\mathrm{C} 24$	$1.400(4)$
$\mathrm{Cl} 2-\mathrm{C} 36$	$1.743(4)$	$\mathrm{N} 2-\mathrm{C} 30$	$1.365(4)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.398(4)$	$\mathrm{N} 2-\mathrm{C} 32$	$1.450(4)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.360(4)$	$\mathrm{O} 1-\mathrm{C} 3$	$1.221(4)$
$\mathrm{N} 1-\mathrm{C} 9$	$1.455(4)$	$\mathrm{O} 2-\mathrm{C} 26$	$1.224(4)$
$\mathrm{C} 10-\mathrm{C} 9-\mathrm{N} 1-\mathrm{C} 7$	$74.5(4)$	$\mathrm{C} 29-\mathrm{C} 30-\mathrm{C} 31-\mathrm{C} 26$	$-1.7(6)$
$\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 15$	$17.3(5)$	$\mathrm{C} 44-\mathrm{C} 39-\mathrm{C} 24-\mathrm{N} 2$	$54.7(5)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5$	$25.2(5)$	$\mathrm{C} 31-\mathrm{C} 30-\mathrm{C} 29-\mathrm{C} 28$	$25.1(5)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 3$	$-1.5(6)$	$\mathrm{C} 30-\mathrm{N} 2-\mathrm{C} 32-\mathrm{C} 33$	$73.9(4)$
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$-48.4(4)$	$\mathrm{C} 38-\mathrm{C} 33-\mathrm{C} 32-\mathrm{N} 2$	$-3.6(5)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 3-\mathrm{C} 4$	$3.4(6)$	$\mathrm{C} 30-\mathrm{C} 31-\mathrm{C} 26-\mathrm{C} 27$	$2.3(5)$
$\mathrm{C} 8-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-30.4(6)$	$\mathrm{C} 28-\mathrm{C} 27-\mathrm{C} 26-\mathrm{C} 31$	$-27.9(5)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$53.6(5)$	$\mathrm{C} 26-\mathrm{C} 27-\mathrm{C} 28-\mathrm{C} 29$	$50.7(5)$
$\mathrm{C} 21-\mathrm{C} 16-\mathrm{C} 1-\mathrm{N} 1$	$55.1(5)$	$\mathrm{C} 30-\mathrm{C} 29-\mathrm{C} 28-\mathrm{C} 27$	$-46.6(4)$

Table 2
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 9-\mathrm{H} 9 B \cdots \mathrm{O}^{\mathrm{i}}$	0.97	2.51	$3.276(4)$	136
$\mathrm{C} 34-\mathrm{H} 34 \cdots 1^{\mathrm{iii}}$	0.93	2.45	$3.245(5)$	143
$\mathrm{C} 4-\mathrm{H} 4 B \cdots \mathrm{Cg} 1^{\mathrm{iii}}$	0.97	2.86	$3.804(5)$	163
${\mathrm{C} 27-\mathrm{H} 27 B \cdots \mathrm{Cg}^{\mathrm{iv}}}^{\mathrm{iv}}$	0.97	2.73	$3.653(4)$	159
$\mathrm{C}_{3}-\mathrm{H} 38 \cdots 2^{\mathrm{i}}$	0.93	2.75	$3.409(5)$	128
$\mathrm{C}^{2} 4-\mathrm{H} 14 \cdots \mathrm{Cl}^{\mathrm{v}}$	0.93	2.86	$3.637(5)$	143

Symmetry codes: (i) x, y, z; (ii) $x, y-1, z+1$; (iii) $-x+1,-y+2,-z$; (iv) $-x,-y+1,-z+1$; (v) $x+1, y, z-1$.

All H atoms were positioned geometrically and allowed to ride on the parent C atoms, with $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$ and with $U_{\text {iso }}(\mathrm{H})=$

organic papers

$1.2 U_{\text {eq }}(\mathrm{C})\left[1.5 U_{\mathrm{eq}}\left(\mathrm{C}_{\mathrm{Me}}\right)\right]$. The methyl groups were allowed to rotate freely about the $\mathrm{C}-\mathrm{C}$ bond.

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: PLATON (Spek, 2003).

We thank the Department of Science and Technology, India, for data collection on the CCD facility at IISc, Bangalore, under the IRHPA-DST program. DC acknowledges CSIR, India, for a junior research fellowship.

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Bruker (2004). SMART (Version 5.628) and SAINT (Version 6.45a). Bruker AXS Inc., Madison, Wisconsin, USA.
Chopra, D., Nagarajan, K. \& Guru Row, T. N. (2005). Acta Cryst. E61, o3089o3091.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Nagarajan, K., Talwalker, P. K., Shah, R. K., Mehta, S. R. \& Nayak, G. V. (1985). Indian J. Chem. Sect. B, 24, 98-111.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Watkin, D. M., Pearce, L. \& Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.

